FARMACOCINÉTICA POBLACIONAL DE BUSULFÁN

EN EL TRATAMIENTO DE ACONDICIONAMIENTO DE TRASPLANTE DE PROGENITORES HEMATOPOYÉTICOS

Proyecto de Tesis Doctoral

Doctorando:

Edurne Fdez de Gamarra Martínez. Servicio de Farmacia. Hospital de la Sta Creu i St Pau.

Directoras:

Dra. Marta Valle Cano y Dra. Mª Antònia Mangues Bafalluy

Jornada Doctoral en Farmacología de la UAB i UB, 14-junio-2017

Antecedentes

 Aplicación terapéutica BUSULFAN: tratamiento de acondicionamiento previo al transplante autólogo o heterólogo de células madre hematopoyéticas.

TOXICIDAD

ACONDICIONAMIENTO MIELOABLATIVO RÉGIMEN INTENSIDAD REDUCIDA

FALLO DE IMPLANTE

Estrecho margen terapéutico

Presentación IV y oral

Antecedentes

- Modelado farmacocinético poblacional:
 - ✓ Herramienta que permite mejorar la monitorización terapéutica
 - ✓ Individualización de la terapia más eficiente.

Posibilidad de mejorar resultados y ahorro económico

Antecedentes

Situación actual:

- √ Utilización en adultos y niños
- ✓ Dosificación según protocolos
- ✓ Pocos centros con posibilidad de monitorización farmacocinética → consumo principalmente presentación IV
- ✓ Monitorización basada en múltiples extracciones

Hipótesis de trabajo

- Empleando datos obtenidos de manera rutinaria en la clínica durante los últimos años podremos desarrollar un modelo
 - 1) Predecir la dosis inicial de busulfán para cada paciente (adulto o pediátrico), en función de las covariables (variables demográficas y fisiopatológicas) identificadas en el modelo.
 - √↑ % pacientes con concentraciones de busulfán dentro del margen terapéutico establecido;
 - 2) Reducir el número de muestras que se extraen a cada paciente para realizar la monitorización, ya que esta se basará en el modelo desarrollado
 - √ ↓ molestias a los pacientes; ↓ gasto asociado

Objetivo principal

 Desarrollar un modelo farmacocinético poblacional que describa la farmacocinética de busulfán tanto en pacientes pediátricos como en adultos, para:

- ✓ establecer una pauta de dosificación inicial de busulfán que garantice exposiciones dentro del rango terapéutico establecido, así como
- ✓ proponer un nuevo esquema de extracción de muestras sanguíneas para determinar concentraciones de busulfán durante su monitorización.

Objetivos específicos

- Desarrollar un modelo farmacocinético de busulfán a partir de datos de rutina clínica mediante aproximación paramétrica de efectos mixtos no lineales, de datos obtenidos en rutina clínica entre 2005-2014.
- Identificar los factores demográficos y/o clínicos responsables de la variabilidad
- Evaluar la capacidad predictiva del modelo.
- Establecer nuevas pautas de primeras dosis
- Proponer nuevos puntos temporales para la extracción de muestras sanguíneas
- Implementar el software necesario en el Servicio de Farmacia
- Calcular el gasto económico asociado a un mejor ajuste de dosis desde el inicio

Plan de trabajo

- Elaboración del protocolo de trabajo
- Autorización CEIC/AEMPS
- Base de datos

- Validación del modelo
- Simulación de dosis
- Simulación muestreo
- Implantación software
- Cálculo ahorro económico
- Escritura de artículos
- Escritura de tesis

Características del estudio

Diseño	Estudio retrospectivo
Enfermedad en estudio	Trasplante de progenitores hematopoyéticos
Datos de los medicamentos en estudio	Busulfan: agente alquilante, código ATC L01AB01
Población en estudio y número total de sujetos	Pacientes, adultos y pediátricos, que han sido tratados en el Hospital de la Santa Creu i Sant Pau con busulfán como parte del régimen de acondicionamiento previo a un trasplante de progenitores hematopoyéticos, entre enero 2005 y diciembre 2014. Nº de pacientes = 210.
Calendario. Duración prevista del estudio	48 meses

Métodos

Modelado farmacocinético poblacional

Población de estudio

Fuente de información

Programa de análisis de datos de efectos mixtos no lineales (NONMEM, versión 7.2)

- Selección entre modelos anidados
- Gráficas de diagnóstico
- Plausibilidad de los estimados de los parámetros
- Error de estimación asociado a los parámetros inferior 50%, que se expresará como error estándar relativo (mediante el ratio entre el valor de error estimado por NONMEM y el valor del parámetro en porcentaje).

Modelo estructural

- ✓ Absorción de primer orden/orden cero
- ✓ Tiempo de latencia
- ✓ Modelos mono o bicompartimentales con eliminación de primer orden desde el compartimiento central
- ✓ Eliminación saturable

Incorporación de los efectos aleatorios

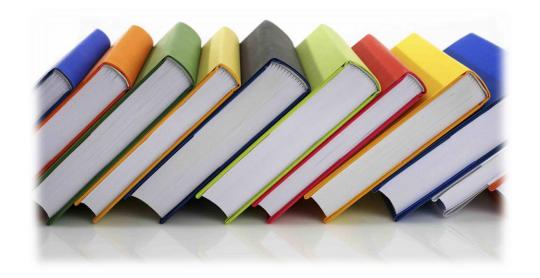
- ✓ Variabilidad interindividual
- ✓ Variabilidad interocasiones
- ✓ Error residual

Incorporación de covariables

✓ Métodos gráficos y de regresión. Aquellas variables que resulten en una relación estadísticamente significativa serán evaluadas en NONMEM ("forward inclusion/barckward elimination")

Evaluación de la capacidad predictiva del modelo seleccionado:

- ✓ Datos de pacientes tratados con busulfán y sometidos a monitorización farmacocinética en el Hospital de la Santa Creu i Sant Pau, enero-junio 2015
- ✓ Se calcularán el error medio de predicción (para cuantificar las desviaciones sistemáticas de las predicciones) y la raíz cuadrada del error de predicción al cuadrado medio (para cuantificar la precisión de las predicciones) junto con los intervalos de confianza del 95% de cada uno de ellos.


Establecimiento de la dosis inicial:

✓ Simulaciones de Monte Carlo: se simularán 1000 individuos en cada situación a evaluar (diferentes dosis en función de la o las covariables detectadas en el modelo).

Determinación del número mínimo de muestras tiempos de extracción:

- ✓ Se emplearán los datos que se obtengan entre enero de 2015 y junio de 2016. Se generarán los parámetros de estos individuos en diferentes ocasiones en las que se variará el número de muestras sanguíneas obtenidas y los tiempos de obtención (comenzando por el número total de muestras disponibles y reduciendo dicho número hasta un valor mínimo de dos muestras por paciente).
- ✓ Se realizarán simulaciones de todo el perfil cinético con los parámetros obtenidos y se calculará el valor de AUC predicho por el modelo. Este valor se comparará con el valor observado a partir del total de muestras recogidas según el plan actual
- ✓ Se aceptará una desviación en el AUC inferior al valor de variabilidad interocasión.
- Implementación de la nueva estrategia de monitorización en Pmetrics
- Cuantificación del ahorro en fármaco con la nueva estrategia

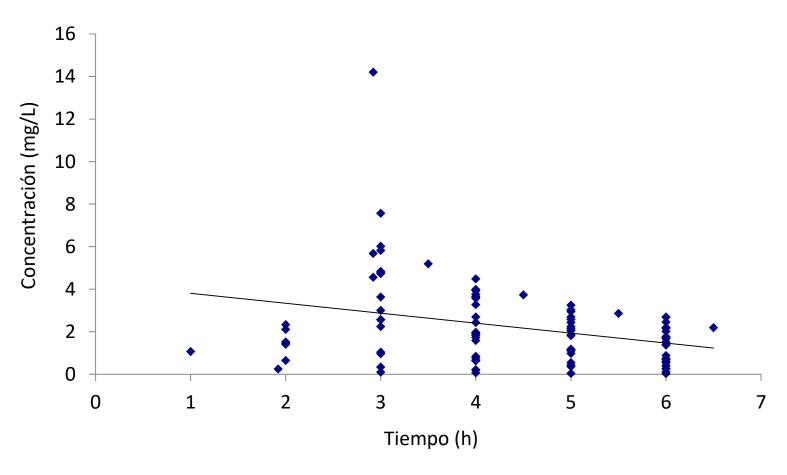
Fuentes documentales consultadas

 Revisión bibliográfica sobre Farmacocinética poblacional y en concreto sobre busulfán: se revisó la bibliografía disponible en PubMed a la hora de redactar el protocolo y posteriormente con una frecuencia mensual.

Elaboración del protocolo y presentación al Comité
Ético de Investigación Clínica del Hospital de la
Santa Creu i Sant Pau para su aprobación:

Autorizado en abril de 2015.

Elaboración de la base de datos: Completada en septiembre de 2015.


- Desarrollo del modelo: Realizado hasta el momento el análisis de datos IV.
 - Desarrollo del modelo básico
 - Selección de covariables
 - Modelo poblacional final

Datos IV:

 28 pacientes pediátricos del Hospital de la Santa Creu i Sant Pau sometidos a trasplante de progenitores hematopoyéticos.

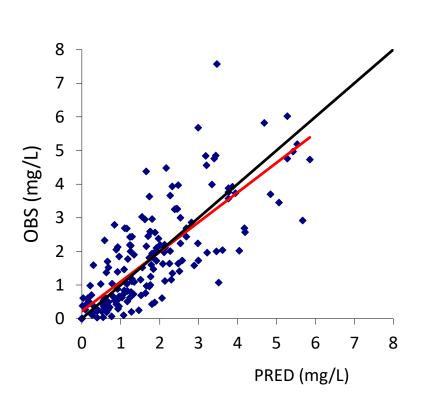
Dosis inicial de BUSULFAN					
MIELOABLATIVO			INTENSIDAD REDUCIDA		
Peso corporal	Dosis		Peso corporal	Dosis	
(kg)	(mg/kg/día)		(Kg)	(mg/kg/día)	
3 – 15	5,1		3 – 15	3,5	
15 – 25	4,9		15 – 25	3,2	
25 – 50	4,1		25 – 50	2,8	
50 – 75	3,3		50 – 75	2,2	
75 - 100	2,7		75 - 100	1,8	

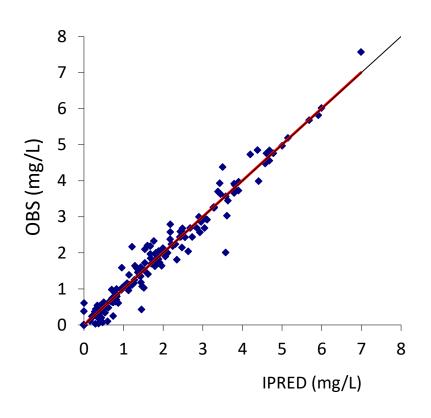
Desarrollo del modelo básico

- ID=27 presentaba concentraciones muy elevadas.
- Su eliminación disminuyó la variabilidad del V un 20% y el ER

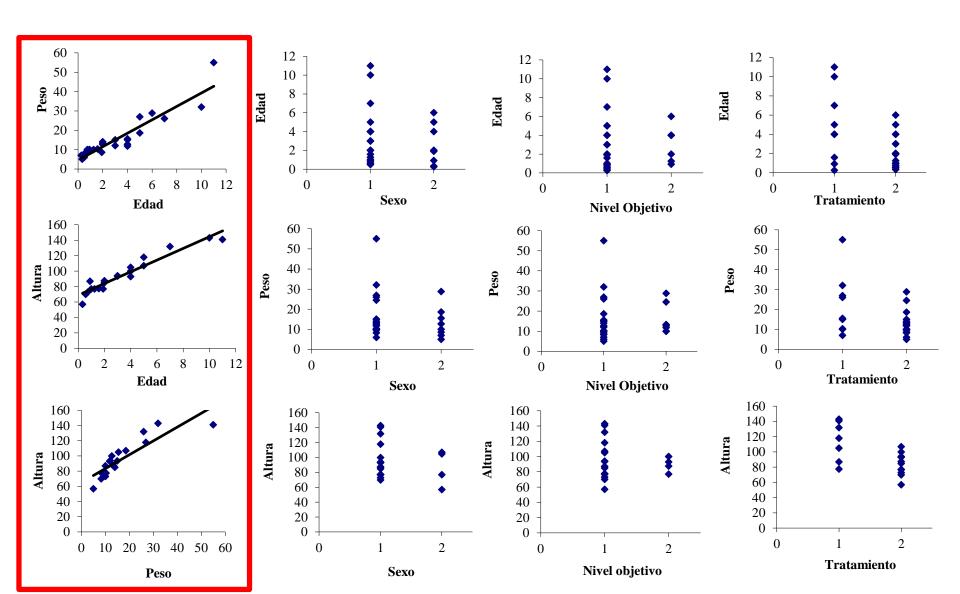
Desarrollo del modelo básico

Modelo	Características	Función objetiva
#1	Modelo monocompartimental, con eliminación lineal y error aditivo	14,664
#2	Modelo monocompartimental, con eliminación lineal y error aditivo, excluyendo al voluntario 27 de los datos	-35,805
#3	Modelo monocompartimental, con eliminación lineal y error combinado	27,972
#4	Modelo monocompartimental, con eliminación lineal y error proprocional	27,972
#5	Modelo monocompartimental, con eliminación Michaelis-Menten y error aditivo	-68,199

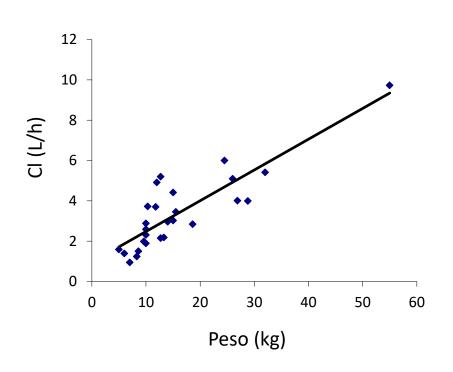

Desarrollo del modelo básico

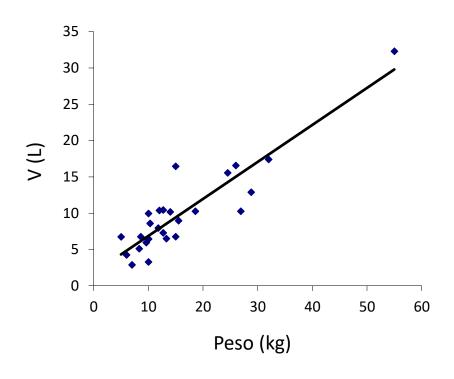

Modelo monocompartimental, con eliminación lineal
 y error aditivo, excluyendo al voluntario 27 de los datos

-35,805


Valores medios para el modelo básico seleccionado				
Aclaramiento (CI)	2,94 L/h			
Volumen de distribución (V)	8,69 L			
Variabilidad interindividual del Cl (IIV Cl)	55,76 %			
Variabilidad interindividual del V (IIV V)	49,70 %			
Error residual (ER) aditivo	0,34 mg/L			

Desarrollo del modelo básico





Selección de covariables

Selección de covariables

Modelo poblacional final

✓ Inclusión del peso mediante un modelo alométrico tanto para el CL como para V según las siguientes ecuaciones:

- Disminución de la FO en + 30 puntos
- El peso explica un 38,18% de IIV CL y un 26,07% de IIV V

Modelo poblacional final

- ✓ Monocompartimental lineal, con eliminación de primer orden
- ✓ Relación CL y V con el peso descrita por funciones alométricas
- ✓ Incorporación de la IOV en el CL
- ✓ Error residual de tipo aditivo

Modelo poblacional final

Parámetro	Estimado	Error estándar (%)
CL (unidades volumen/tiempo)	3,33	7,27
V (unidades volumen)	10,20	8,62
Variabilidad interindividual (%)		
IIV CL	32,86	30,09
IIV V	36,33	38,11
Variabilidad interocasión (%)		
IOV CL	15,59	61,73
Error residual aditivo (unidades masa/vol)	0,28	22,70

[√] Valores para un individuo pediátrico típico de 15,8 Kg

Desarrollo del modelo (vía oral)

FARMACOCINÉTICA POBLACIONAL DE BUSULFÁN

EN EL TRATAMIENTO DE ACONDICIONAMIENTO DE TRASPLANTE DE PROGENITORES HEMATOPOYÉTICOS

Proyecto de Tesis Doctoral

Edurne Fdez. de Gamarra Martínez