Què podem esperar dels estudis de genètica de malalties complexes i de la seva aplicació en psiquaitria?

The revolution in the Life Sciences

Living organisms may be viewed as the only part of the natural world whose members contain internal description of themselves. This is why the whole biology must be rooted in the DNA, and our task is still to discover how these DNA sequences arose in evolution and how they are interpreted in to build the diversity of the living world, including disease.

Sydney Brenner, dec 2012, Science

SNPs in the Human Genome

- Normally biallelic (two variants)
- Allelic frequencies present differences between populations.
- Non human specific
- Phenotypic effect: normally without effect
- Public databases for SNPs (you will see in other lessons)

http://www.nhgri.nih.gov, http://www.snp.cshl.org

Vol 461/8 October 2009/doi:10.1038/nature08494	natur
	REVIEWS
Finding the missing he	eritability of complex
diseases	
Teri A. Manolio ¹ , Francis S. Collins ² , Nancy J. Cox ³ , David Mark I. McCarthy ⁷ , Erin M. Ramos ⁵ , Lon R. Cardon ⁶ , Arav Augustine Kong ¹¹ , Leonid Krugtyak ¹² , Elaine Mardis ¹³ , Ch Alice S. Whittemore ¹⁶ , Michael Boehnke ¹⁷ , Andrew G. Clar Trudy F. C. Mackay ²² , Steven A. McCarroll ²³ & Peter M. N	I B. Goldstein ⁴ , Lucia A. Hindorff ⁵ , David J. Hunter ⁶ , inda Chakravarti ⁹ , Judy H. Cho ¹⁰ , Alan E. Guttmacher ¹ arles N. Rotimi ¹⁴ , Montgomery Slatkin ¹⁵ , David Valle ⁹ , k ¹⁸ , Evan E. Eichler ¹⁹ , Greg Gibson ²⁰ , Jonathan L. Haines ²
Genome-wide association studies have identified hundreds of g traits, and have provided valuable insights into their genetic a small increments in risk, and explain only a small proportion or remaining, 'missing' heritability can be explained. Here we ex- research strategies, including and extending beyond current ee	tenetic variants associated with complex human diseases an rchitecture. Most variants identified so far confer relatively of familial clustering, leading many to question how the amine potential sources of missing heritability and propose nome-wide association approaches, to illuminate the genetic

In s	pite of the gr	eat success	
Table 1 Estimates of heritability and nun	nber of loci for several complex	traits	
Disease	Number of loci	Proportion of heritability explained	Heritability measure
Age-related macular degeneration ⁷²	5	50%	Sibling recurrence risk
Crohn's disease**	32	20%	Genetic risk (liability)
Systemic lupus erytnematosus ²⁴	6	15%	Sibling recurrence risk
LDL shelestere ¹⁷⁵	18	0%0 5.20/	Sibling recurrence risk
Holdht15	40	5.2%	Residual* prienotypic var Phenotypic variance
Farly onset myocardial infarction ⁷⁶	9	2.8%	Phenotypic variance
Fasting glucose ⁷⁷	4	1.5%	Phenotypic variance
* Residual is after adjustment for age gender diabeti			i nenotypie vanance
Residuaris arter aujustitient for age, gender, diabete			

Benefits Does not require an initial hypothesis Uses digital and additive data that can be mined and augmented without data degradation Encourages the formation of collaborative consortia, which tend to continue their collaboration for subsequent analyses Rules out specific genetic associations (e.g., by showing that no common alleles, other than APOE, are associated with Alzheimer's disease with a relative risk of more than 2) Provides data on the ancestry of each subject, which assists in matching case subjects with control subjects Provides data on both sequence and copy-number variations Misconceptions Thought to provide data on all genetic variability associated with disease, when in reality only common alleles with large effects are identified Thought to screen out alleles with a small effect size, when in reality such findings may still be very useful in determining pathogenic biochemical pathways, even though low-risk alleles may be of little predictive value Limitations Requires samples from a large number of case subjects and control subjects and therefore can be challenging to organize Finds loci, not genes, which can complicate the identification of pathogenic changes on an associated haplotype Detects only alleles that are common (>5%) in a population	Та	ble 2. Benefits, Misconceptions, and Limitations of the Genomewide Association Study.
Does not require an initial hypothesis Uses digital and additive data that can be mined and augmented without data degradation Encourages the formation of collaborative consortia, which tend to continue their collaboration for subsequent analyses Rules out specific genetic associations (e.g., by showing that no common alleles, other than APOE, are associated with Alzheimer's disease with a relative risk of more than 2) Provides data on the ancestry of each subject, which assists in matching case subjects with control subjects Provides data on both sequence and copy-number variations Misconceptions Thought to provide data on all genetic variability associated with disease, when in reality only common alleles with large effects are identified Thought to screen out alleles with a small effect size, when in reality such findings may still be very useful in deter- mining pathogenic biochemical pathways, even though low-risk alleles may be of little predictive value Limitations Requires samples from a large number of case subjects and control subjects and therefore can be challenging to organize Finds loci, not genes, which can complicate the identification of pathogenic changes on an associated haplotype Detects only alleles that are common (>5%) in a population	Be	nefits
Uses digital and additive data that can be mined and augmented without data degradation Encourages the formation of collaborative consortia, which tend to continue their collaboration for subsequent analyse: Rules out specific genetic associations (e.g., by showing that no common alleles, other than APOE, are associated with Alzheimer's disease with a relative risk of more than 2) Provides data on the ancestry of each subject, which assists in matching case subjects with control subjects Provides data on both sequence and copy-number variations Misconceptions Thought to provide data on all genetic variability associated with disease, when in reality only common alleles with large effects are identified Thought to screen out alleles with a small effect size, when in reality such findings may still be very useful in deter- mining pathogenic biochemical pathways, even though low-risk alleles may be of little predictive value Limitations Requires samples from a large number of case subjects and control subjects and therefore can be challenging to organize Finds loci, not genes, which can complicate the identification of pathogenic changes on an associated haplotype Detects only alleles that are common (>5%) in a population		Does not require an initial hypothesis
 Encourages the formation of collaborative consortia, which tend to continue their collaboration for subsequent analyses. Rules out specific genetic associations (e.g., by showing that no common alleles, other than APOE, are associated with Alzheimer's disease with a relative risk of more than 2) Provides data on the ancestry of each subject, which assists in matching case subjects with control subjects Provides data on both sequence and copy-number variations Misconceptions Thought to provide data on all genetic variability associated with disease, when in reality only common alleles with large effects are identified Thought to screen out alleles with a small effect size, when in reality such findings may still be very useful in determining pathogenic biochemical pathways, even though low-risk alleles may be of little predictive value Limitations Requires samples from a large number of case subjects and control subjects and therefore can be challenging to organize Finds loci, not genes, which can complicate the identification of pathogenic changes on an associated haplotype Detects only alleles that are common (>5%) in a population 		Uses digital and additive data that can be mined and augmented without data degradation
Rules out specific genetic associations (e.g., by showing that no common alleles, other than APOE, are associated with Alzheimer's disease with a relative risk of more than 2) Provides data on the ancestry of each subject, which assists in matching case subjects with control subjects Provides data on both sequence and copy-number variations Misconceptions Thought to provide data on all genetic variability associated with disease, when in reality only common alleles with large effects are identified Thought to screen out alleles with a small effect size, when in reality such findings may still be very useful in deter- mining pathogenic biochemical pathways, even though low-risk alleles may be of little predictive value Limitations Requires samples from a large number of case subjects and control subjects and therefore can be challenging to organize Finds loci, not genes, which can complicate the identification of pathogenic changes on an associated haplotype Detects only alleles that are common (>5%) in a population		Encourages the formation of collaborative consortia, which tend to continue their collaboration for subsequent analyses
Provides data on the ancestry of each subject, which assists in matching case subjects with control subjects Provides data on both sequence and copy-number variations Misconceptions Thought to provide data on all genetic variability associated with disease, when in reality only common alleles with large effects are identified Thought to screen out alleles with a small effect size, when in reality such findings may still be very useful in deter- mining pathogenic biochemical pathways, even though low-risk alleles may be of little predictive value Limitations Requires samples from a large number of case subjects and control subjects and therefore can be challenging to organize Finds loci, not genes, which can complicate the identification of pathogenic changes on an associated haplotype Detects only alleles that are common (>5%) in a population		Rules out specific genetic associations (e.g., by showing that no common alleles, other than APOE, are associated with Alzheimer's disease with a relative risk of more than 2)
Provides data on both sequence and copy-number variations Misconceptions Thought to provide data on all genetic variability associated with disease, when in reality only common alleles with large effects are identified Thought to screen out alleles with a small effect size, when in reality such findings may still be very useful in deter- mining pathogenic biochemical pathways, even though low-risk alleles may be of little predictive value Limitations Requires samples from a large number of case subjects and control subjects and therefore can be challenging to organize Finds loci, not genes, which can complicate the identification of pathogenic changes on an associated haplotype Detects only alleles that are common (>5%) in a population		Provides data on the ancestry of each subject, which assists in matching case subjects with control subjects
Misconceptions Thought to provide data on all genetic variability associated with disease, when in reality only common alleles with large effects are identified Thought to screen out alleles with a small effect size, when in reality such findings may still be very useful in deter- mining pathogenic biochemical pathways, even though low-risk alleles may be of little predictive value Limitations Requires samples from a large number of case subjects and control subjects and therefore can be challenging to organize Finds loci, not genes, which can complicate the identification of pathogenic changes on an associated haplotype Detects only alleles that are common (>5%) in a population		Provides data on both sequence and copy-number variations
 Thought to provide data on all genetic variability associated with disease, when in reality only common alleles with large effects are identified Thought to screen out alleles with a small effect size, when in reality such findings may still be very useful in determining pathogenic biochemical pathways, even though low-risk alleles may be of little predictive value Limitations Requires samples from a large number of case subjects and control subjects and therefore can be challenging to organize Finds loci, not genes, which can complicate the identification of pathogenic changes on an associated haplotype Detects only alleles that are common (>5%) in a population 	Mi	isconceptions
 Thought to screen out alleles with a small effect size, when in reality such findings may still be very useful in determining pathogenic biochemical pathways, even though low-risk alleles may be of little predictive value Limitations Requires samples from a large number of case subjects and control subjects and therefore can be challenging to organize Finds loci, not genes, which can complicate the identification of pathogenic changes on an associated haplotype Detects only alleles that are common (>5%) in a population 		Thought to provide data on all genetic variability associated with disease, when in reality only common alleles with large effects are identified
Limitations Requires samples from a large number of case subjects and control subjects and therefore can be challenging to organize Finds loci, not genes, which can complicate the identification of pathogenic changes on an associated haplotype Detects only alleles that are common (>5%) in a population		Thought to screen out alleles with a small effect size, when in reality such findings may still be very useful in deter- mining pathogenic biochemical pathways, even though low-risk alleles may be of little predictive value
Requires samples from a large number of case subjects and control subjects and therefore can be challenging to organize Finds loci, not genes, which can complicate the identification of pathogenic changes on an associated haplotype Detects only alleles that are common (>5%) in a population	Lir	nitations
Finds loci, not genes, which can complicate the identification of pathogenic changes on an associated haplotype Detects only alleles that are common (>5%) in a population		Requires samples from a large number of case subjects and control subjects and therefore can be challenging to organize
Detects only alleles that are common (>5%) in a population		Finds loci, not genes, which can complicate the identification of pathogenic changes on an associated haplotype
		Detects only alleles that are common (>5%) in a population

Many more GWAS

And lots of information has accumulated

The NCBI dbGaP database of genotypes and phenotypes

Matthew D Mailman, Michael Feolo, Yumi Jin, Masato Kimura, Kimberly Tryka, Rinat Bagoutdinov, Luning Hao, Anne Kiang, Justin Paschall, Lon Phan, Natalia Popova, Stephanie Pretel, Lora Ziyabari, Moira Lee, Yu Shao, Zhen Y Wang, Karl Sirotkin, Minghong Ward, Michael Kholodov, Kerry Zbicz, Jeffrey Beck, Michael Kimelman, Sergey Shevelev, Don Preuss, Eugene Yaschenko, Alan Graeff, James Ostell & Stephen T Sherry

The National Center for Biotechnology Information has created the dbGaP public repository for individual-level phenotype, exposure, genotype and sequence data and the associations between them. dbGaP assigns stable, unique identifiers to studies and subsets of information from those studies, including documents, individual phenotypic variables, tables of trait data, sets of genotype data, computed phenotype-genotype associations, and groups of study subjects who have given similar consents for use of their data.

NATURE GENETICS | VOLUME 39 | NUMBER 10 | OCTOBER 2007

http://www.nature.com/ng/journal/v39/n10/abs/ng1007-1181.html

NCBI created database (2007!....well, december 2006)

The main aim is to uniformely store primary data from published studies

57

58

Rare vs. Frequent variants Table 2 Characteristics of common and rare disease variants compared Common disease variants Rare disease variants Discovery by population association, case-control studies, using genome-wide markers (WGA) biscovery by DNA resequencing of candidate genes, preferably in early onset cases with one or more relatives affected MAF > 0.1% to 2–3% Higher than rare familial mutations, lower than polymorphisms. Often population specific. Mostly MAF > 5% Explained by LD with functional variant Not detected by WGA OR mostly between 1.2 and 1.5 Higher ORs could be due to recent natural selection OR mostly ≥ 2 No familial concentration No familial concentration Need large studies with control for ethnic heterogeneity to achieve statistical Assess significance by increased frequencies in cases vs. controls and by functional analysis of variant analysis of variant Summation of effects of several variants make significant contribution to PAR Make substantial contribution to PAR ely Penetrance often high enough to justify prophylactic interventions Variants identified are functionally relevant Make a contribution to understanding disease etiology Effect may be modified by common variants Low penetrance makes prophylactic intervention unlikely Hard to find functionally relevant variant Contribution to disease etiology questionable May suggest candidates for rare variant search

	Rare var	iants	and CNV	′s	
ase associatio	ons with rare CNVs and comm	non CNPs			
Locus	Type of CNV	Size (kb)	Population frequency	Case frequency	Effect size (OR)
16p11.2	De novo deletion	600	1×10^{-4}	1%	100
16p11.2	Rare duplication	600	3×10^{-4}	0.50%	16
1q21.1	Rare deletion	1,400	2×10^{-4}	0.30%	15
1q21.1	Rare deletion	1,400	2×10^{-4}	0.47%	Not observed in 4,73 controls
15q13.3	Rare deletion	1,600	2×10^{-4}	0.20%	12
15q13.3	Rare deletion	1,600	2×10^{-4}	1.0%	Not observed in 3,69 controls
15q13.3	Rare deletion	1,600	2×10^{-4}	0.30%	Not observed in 960 controls
22011.2	Rare deletion	3,000	$2.5 imes 10^{-4}$	1%	40
LEGILLE					
IRGM	Deletion polymorphism	20	7%	11%	15
IRGM NEGR1	Deletion polymorphism Deletion polymorphism	20 45	7% 65%	11% Ouantitative trait	1.5 <1 kg
	ase association Locus 16p11.2 16p11.2 16p11.2 16p11.2 16p13.3 15q13.3 15q13.3	Asse associations with rare CNVs and comm Locus Type of CNV 16p11.2 De novo deletion 16p11.2 Rare duplication 1q21.1 Rare deletion 15q13.3 Rare deletion 15q13.3 Rare deletion	Rare variants ase associations with rare CNVs and common CNPs Locus Type of CNV Size (kb) 16p11.2 De novo deletion 600 16p11.2 Rare duplication 600 1q21.1 Rare duplication 600 1q21.1 Rare deletion 1.400 15q13.3 Rare deletion 1.600 15q13.3 Rare deletion 1.600 15q13.3 Rare deletion 1.600	Rare variants and CNV ase associations with rare CNVs and common CNPs Locus Type of CNV Size (kb) Population frequency 16p11.2 De novo deletion 600 1 × 10 ⁻⁴ 1q21.1 Rare duplication 600 3 × 10 ⁻⁴ 1q21.1 Rare deletion 1,400 2 × 10 ⁻⁴ 15q13.3 Rare deletion 1,600 2 × 10 ⁻⁴ 15q13.3 Rare deletion 1,600 2 × 10 ⁻⁴ 15q13.3 Rare deletion 1,600 2 × 10 ⁻⁴	Rare variants and CNVs ase associations with rare CNVs and common CNPs Locus Type of CNV Size (bb) Population frequency Case frequency 16p11.2 De novo deletion 600 1 × 10 ⁻⁴ 1% 16p11.2 Rare duplication 600 3 × 10 ⁻⁴ 0.50% 12p11.1 Rare duplication 1400 2 × 10 ⁻⁴ 0.30% 12p13.3 Rare deletion 1,600 2 × 10 ⁻⁴ 0.20% 15q13.3 Rare deletion 1,600 2 × 10 ⁻⁴ 0.20% 15q13.3 Rare deletion 1,600 2 × 10 ⁻⁴ 0.30%

Rare variants may add noise

Rare Variants Create Synthetic Genome-Wide Associations

Samuel P. Dickson^{1,2}, Kai Wang³, Ian Krantz^{3,4,5}, Hakon Hakonarson^{3,4,5}, David B. Goldstein¹*

1 Institute for Genome Sciences and Policy, Center for Human Genome Variation, Duke University, Durham, North Carolina, United States of America, 2 Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America, 3 Center for Applied Genomics, Children's Hospital of Pennsylvania Philadelphia, Pennsylvania, United States of America, 4 Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America, 5 Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America

Abstract

Abstract Genome-wide association studies (GWAS) have now identified at least 2,000 common variants that appear associated with common diseases or related traits (http://www.genome.gov/gwastudies), hundreds of which have been convincingly replicated. It is generally thought that the associated markers reflect the effect of a nearby common (minor allele frequency >0.05) causal site, which is associated with the marker, leading to extensive resequencing efforts to find causal sites. We propose as an alternative explanation that variants much less common than the associated one may create "synthetic associations" by occurring, stochastically, more often in association with one of the alleles at the common site versus the other allele. Although synthetic associations are an obvious theoretical possibility, they have never been systematically explored as a possible explanation for GWAS findings. Here, we use simple computer simulations to show the conditions under which such synthetic associations will arise and how they may be recognized. We show that they are not only possible, but inevitable, and that under simple but reasonable genetic models, they are likely to account for or contribute to many of the recently identified signals reported in genome-wide association studies. We also illustrate the behavior of synthetic associations in real datasets by showing that rare causal mutations responsible for both hearing loss and sickle cell anemia create genome-wide significant synthetic associations, in the latter case extending over a 2.5-Mb interval anemia create genome-wide significant synthetic associations, in the latter case extending over a 2.5-Mb interval encompassing scores of "blocks" of associated variants. In conclusion, uncommon or rare genetic variants can easily create synthetic associations that are credited to common variants, and this possibility requires careful consideration in the interpretation and follow up of GWAS signals.

PLoS Biol January 2010 8(1): e1000294

Gen disc its i	etic order mpli	arch rs: th catio	itectures of e emerging ns	psychia picture	atric e an	c d		
Patrick F Abstract In the part these con disorders depende depressiv yielded m genetic a strategie	E Sullivan Psychiat st 5 years, nditions. It s (namely, nnce, anor- ve disorde new hypot architectu s. Further	r ¹ , Mark J. tric disorde there has b n this Revie Alzheimer ² exia nervos r, nicotine heses abou res of these study using	Daly ² and Michael O'Doi rs are among the most intr been unprecedented progr w, we discuss the genetics s disease, attention-deficit a, autism spectrum disorde dependence and schizoph th aetiology and now provic e conditions, which have im g a balanced portfolio of m	novan ³ actable enigma ess on the gene of nine cardina hyperactivity d r, bipolar disorr renia). Empirica le data on the o aplications for fi ethods to asses	s in medi tics of ma l psychia lisorder, a der, majo der, majo der, majo der, majo s rational s multiple s multiple	cine. any of tric ilcohol r ches have ated earch e forms		
Table 1 Defining fe	atures of n	ine psychiatr	ic disorders*	Autiem en estrum	0.001	0.80	Markadh abasemal assial	1
Name	Life prevalence	Heritability	Essential characteristics	disorder (ASD)	0.001	0.00	interaction and communication beginning before age 3	p d o
Alzheimer's disease	0.132	0.58	Dementia, defining neuropathology	Bipolar disorder (BIP)	0.007	0.75	Manic-depressive illness, episodes of mania, usually with major depressive disorder	đ
	0.053	0.75	Persistent inattention, hyperactivity, impulsivity	Major depressive disorder (MDD)	0.130	0.37	Unipolar depression, marked and persistent dysphoria with physical	R
Attention-deficit hyperactivity disorder (ADHD)							and cognitive symptoms	
Attention-deficit hyperactivity disorder (ADHD) Alcohol dependence (ALC)	0.178	0.57	Persistent ethanol use despite tolerance, withdrawal, dysfunction	Nicotine dependence (NIC)	0.240	0.67	Persistent nicotine use with physical dependence (usually cigarettes)	A f

Structural Location variant (Mb)	Genes	Туре	Disorder	Frequency in cases	Frequency in controls	Odds ratio	P value	Other associations	Refs
1q21.1 chr1:	34	Deletion	SCZ	0.0018	0.0002	9.5	8×10^{-6}	Developmental delay,	184
145.0–148	0	Duplication	SCZ	0.0013	0.0004	4.5	0.02	intellectual disability, micro- and macrocephaly, dysmorphia, epilepsy, cataracts, cardiac defects, possibly ASD ¹⁸⁵ , thrombocytopenia-absent radius syndrome ^{44,158,184-188}	184
2p16.3 chr2: 50.1-51.2	NRXN1 exons	Deletion	ASD				0.004	Developmental delay, intellectual disability, epilepsy,	81
		Deletion	SCZ	0.0018	0.0002	7.5	1×10^{-6}	Pitt–Hopkins-like syndrome 2	184
3q29 chr3: 195.7-197	19 3	Deletion	SCZ	0.0010	0.0	3.8	4×10-4	Developmental delay, intellectual disability, possibly ASD	184
7q11.23 chr7: 72.7-74.1	25	Duplication	ASD	0.0011			0.003	Developmental delay. intellectual disability. Deletion: Williams-Beuren syndrome	81
7q36.3 chr7: 158.8-158	VIPR2 9	Duplication	SCZ	0.0024	0.0001	16.4	4×10 ⁻⁵		44. 184
15q11.2 chr15: 23.6-28.4	70	Duplication	ASD	0.0018			4×10 ⁻⁹	Developmental delay. intellectual disability. Prader-Willi and Angelman syndromes ¹⁸⁸	81
15q13.3 chr15:	12	Duplication	ADHD	0.0125	0.0061	2.1	2×10^{-4}	Developmental delay,	120
30.9-33.5		Duplication	ASD	0.0013			2×10^{-5}	intellectual disability, epilepsy ^{188,189}	81
		Deletion	SCZ	0.0019	0.0002	12.1	7×10^{-7}	chuchay	184
16p13.11 chr16: 15.4-16.3	8	Duplication	ADHD	0.0164	0.0009	13.9	8×10-4	Deletion: developmental delay, epilepsy ^{188,189}	119
16p11.2 chr16: 29.5–30.2	29	Deletion	ASD	0.0037			5 ~ 10-20	Developmental delay, intellectual disability, epilepsy, macrocephaly, obesity ^{190,191}	81
		Duplication	ASD	0.0013			2×10-5	Developmental delay, intellectual disability, epilepsy, microcephaly, low body mass index ^{198,191}	81
		Duplication	SCZ	0.0031	0.0003	9.5	3×10^{-8}		184
17q12 chr17:	18	Deletion	ASD	0.0017	0.0	6.12	9×10^{-4}		192
34.8-36.2		Deletion	SCZ	0.0006	0.0	4.49	3×10^{-4}		
22q11.21 chr22: 18.7-21.8	53	Deletion or duplication	ASD	0.0013			0.002	Developmental delay, intellectual disability, velocard-	81
		Deletion	SCZ	0.0031	0.0	20.3	7×10^{-13}	iotacial-DiGeorge syndrome	184

Phenotype	SNP	Location	Discovery GWAS (cases/controls)	Largest meta-analysis (cases/controls)	P value	Odds ratio	Nearest gene
Alzheimer's disease	rs3616361	chr1:207784968	2.018/5.324 (REF. 34)	<19.870/39,846 (REF. 35)	3.7 + 10-14	1.18	CR1
	rs744373	chr2:127894615	3,006/14,642 (REF. 193)	<19,870/39,846 (REF. 35)	2.6 - 10-14	1.17	BIN1
	rs9349407	chr6:47453378	8,309/7,366 (REF. 36)	18,762/29,827 (REF. 36)	8.6 - 10-4	1.11	CD2AP
	rs11767557	chr7:143109139	8.309/7.366 [REF. 36]	18.762/35.597 (REF. 34)	6.0×10-10	1.11	EPHA1
	rs11136000	chr8:27464510	3,941/7,848 [REF. 33]	8,371/26,965 (REF. 193)	1.6×10-11	1.18	CLU
	rs610932	chr11:59939307	6,688/13,251 (REE 35)	>19,000/38,000 (REF. 35)	1.2×10-18	1.10	MS4A cluster
	rs3851179	chr11:85868640	3,941/7,849 [REF. 35]	8,371/26,966 (REF 193)	3.2 = 10-17	1.15	PICALM
	m3764650	chr19:1046520	5,509/11,531 (REF. 35)	>17,000/34,000 [REF. 35]	5.0×10 ⁻²¹	1.23	ABCA7
	rs2075650	chr19:45395619		8,371/26,966 (REF. 195)	1-10 ⁻²⁰¹	2.53	APOE, TOMM40
	rs3865444	chr19:51727962	8,309/7,366 (REF. 36)	18,762/29,827 [REF. 36]	1.6 - 10-4	1.10	CD33
Alcohol	rs1229984	chr4:100239319	REF. 102		1.3×10-11		ADH1B
consumption	rs6943555	chr7:69806023	REF. 101		4.1×10 ⁻⁴		AUTS2
	m671	chr12:112241766	REF. 100		3×10-111		ALDHZ
Bipolar	rs12576775	chr11:79077193	7,481/9.251 (REF. 60)	11,974/51,793 (REF. 60)	4.4 × 10 ⁻⁴	1.14	ODZ4
disorder	rs4765913	chr12:2419896	7,481/9.250 (REF. 60)	11,974/51,792 (REF. GO)	1.5 × 10*	1.14	CACNAIC
	rs1064395	chr19:19361735	682/1300 (REF. 194)	8,441/35,362 (REF. 194)	2.1 - 10-4	1.17	NCAN
Nicotine	rs1329650	chr10:93345120	38,181 (REF. 93)	73,853 (REF. 93)	5.7 + 10-18		LOC100155947
consumption	rs1051730	chr15:78894339	38,181 (REF. 93)	73.853 (REF. 93)	2.8×10 ^{-m}		CHRNA3
	rs3733829	chr19:41310571	38.181 (REF. 93)	73.853 (REF. 93)	1.0×10*		EGLN2. CYP2A6
Smoking cessation	rs3025343	chr9:136478355	41.278 (REF. 93)	64.924 (REF. 93)	3.6×10*	1.13	DBH
Smoking	rs6265	chr11:27679916	74,035 (REF. 93)	143,023 (REF. 93)	1.8 - 10-4	0.94	BDNF
Schizophrenia	rs1625579	chr1:98502934	9,394/12,462 (REF 59)	17,839/33,859 (REF 59)	1.6×10-11	1.12	MIR137
	rs2312147	chr2:58222928		18,206/42,536 (REF. 195)	1.9×10-4	1.09	VRK2
	rs1344706	chr2:185778428	479/2,937 (REI: 174)	18,945/38,675 (REF. 196)	2.5×10 ^{-tt}	1.10	ZNF804A
	rs17662626	chr2:193984621	9,394/12,463 (REF. 59)	17,639/33,660 [REF. 59]	4.6 - 10-4	1.20	PCGEM1
	rs13211507	chr6:28257377	3.322/3.587 (REF. 70)	18,206/42,536 [REF. 195]	1.4×10-0	1.22	MHC
	rs7004635	chr8:3360967	9,394/12,465 (REF. 59)	17,839/33,862 (REF. 59)	2.7 × 10*	1.10	MMP16
	rs10503253	chr6:4180844	9,394/12,464 (REF. 59)	17,839/33,861 (REF. 59)	4.1 - 10-4	1.11	CSMD1
	rs16887244	chr8:38031345	3,750/6,468 [REF. 68]	8,133/11,007 (REF 68)	1.3×10-18	1.10	LSM1
	rs7914558	chr10:104775908	9,394/12,466 (REF. 59)	17,830/33,863 (REF. 59)	1.8×10-#	1.10	CNNM2
	rs11191580	chr10:104906211	0,304/12,467 (REE 59)	17,830/33,864 (REF 59)	1.1×10 ⁻⁸	1.15	NT5C2
	m11819869	chr11:46560680	1,169/3,714 (REF 197)	3,738/7,802 (REF 197)	3.9×10-4	1.25	AMBRA1
	rs12607809	chr11:124606285		16,206/42,536 [REF. 195]	2.8 = 10-8	1.12	NRGN
	rs12966547	chr18:52752017	9,394/12,468 (REF. 59)	17,839/33,865 (REF. 59)	2.6 × 10-**	1.09	CCDC68
	rs9960767	chr18:53155002		18,206/42,537 (REF, 195)	4.2 - 10-4	1.20	TCF4

The emerging picture
Multiple high confidence structural variants
Rare exonic variants
Increasing number of robustly significant and replicated common variants
Novel biological hypothesis
Cholesterol metabolism in Alzheimer disease
Reinforce previous hypothesis
- synaptic biology for schizophrenia or autism

