Antiviral agents

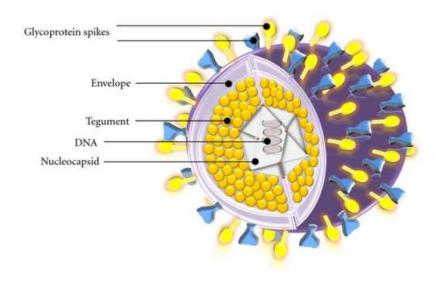

Jordi Rello

Hospital Vall d'Hebron.

jrello@crips.es

37-yr old patient with Fever, Respiratory Failure and Rash

37-yr old patient with Fever, Respiratory Failure and Rash



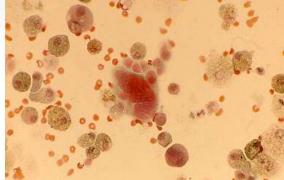
Introduction

- "Viral infections are common causes of respiratory tract disease in the outpatient setting but much less common in the intensive care unit" (Nicholas Stollenwerk, Critical Care 2008)
 - Influenza, VZV/HSV, CMV, RSV : common
 - SARS, hemorragic fever, Hantavirus : rare
- Few drugs available outside HIV when compared to antibiotics
- Very little use in the ICU outside Influenza
- Effective against a very limited group of diseases
- Targets for antiviral drugs are various points of viral reproduction

HSV

HSV reactivation in lower respiratory tract

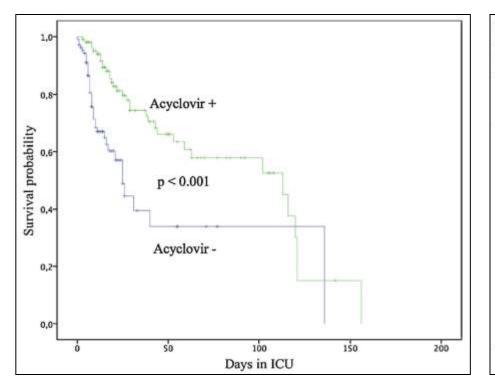
- 764 ICU patients, 361 tested for HSV in LRT
- HSV isolated in LRT of 58 patients(16%) (Bruynseels, Lancet 2003)
- 201 patients ventilated for ≥5 days with suspected VAP
- HSV isolated in LRT of 129 patients (64%) (Luyt, AJRCCM 2007)



HSV bronchopneumonitis

...

- HSV bronchopneumonitis in 42/201 (21%) patients ventilated for ≥5 d with suspected VAP
 - Clinical suspicion
 - HSV detection
 - HSV-specific nuclear inclusions
- 23 (55%) had oral-labial lesions

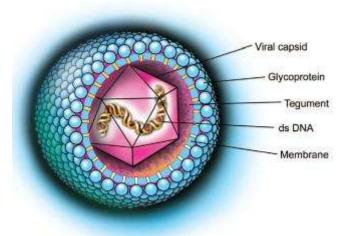

	HSV bronch	HSV bronchopneumonitis			
	Yes n = 42	No n = 159	p		
Total duration of MV, d	36.7 27.5	30.0 27.1	0.03		
VAP episodes/patient, n	1.5 1.0	1.1 1.1	0.03		
ICU length of stay, d In-hospital mortality, n (%)	40.1 27.8 20 (48)	32.1 28.1 66 (42)	0.01 0.5		

1101/1

Luyt, AJRCCM 2007

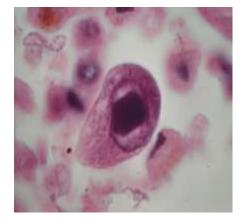
HSV treatment

- Single center, retrospective analysis
- 212 patients HSV +: 106 who received Acyclovir and 106 "controls"



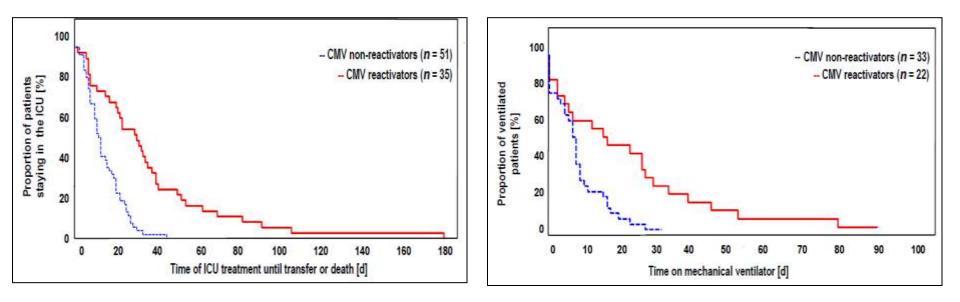
Comparison of the estimated treatment effect of acyclovir on mortality using univariable and multivariable COX regression and propensity score-matched COXregression survival analysis.

	Acyclovir –			
	OR	95%CI	р	
ICU mortality				
Unadjusted model ^a	2.67	1.64-4.34	< 0.001	
Multivariable model	3.21	1.95-5.26	< 0.001	
BAL subgroup	8.42	2.47-28.66	< 0.001	
Airways subgroup	2.93	1.61-5.34	< 0.001	
Propensity score-matched (quintiles) ^a	3.19	1.79-5.69	< 0.001	
In-hospital mortality				
Unadjusted model ^a	3.42	2.23-5.26	< 0.001	
Multivariable model	4.02	2.60-6.22	< 0.001	
BAL subgroup	7.56	2.69-21.25	< 0.001	
Airways subgroup	4.29	2.48-7.40	< 0.001	
Propensity score-matched (quintiles) ^a	3.55	2.16-5.85	< 0.001	


Traen, Journal of clinical virology 2014

Background

- CMV reactivation in blood
 - 30% of seropositive patients
 - Diagnostic using PCR
 - After 4-12 d in ICU
 - Associated to CMV disease ?
- Pulmonary CMV infection
 - 5 30%
 - Diagnostic using histology/cytology
 - After 21 d of MV

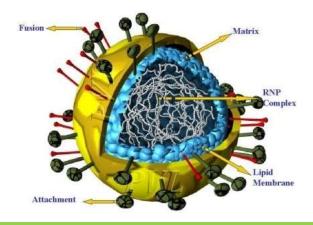


Pulmonary CMV infection

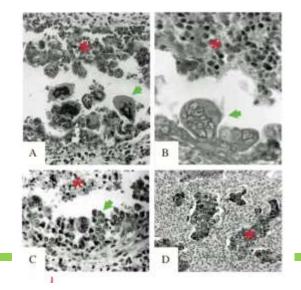
Population	Frequency of viral detection	Clinical presentation of CMV pneumonia	Diagnostic tests
Patients with ARF and VAP (Papazian, Anesthesiology 1996)	25/86 (29%)	Diffuse interstitial pneumonia	Histology: post-mortem in 60, open-lung biopsy in 26
Surgery patients with SAPS II>40 (Heininger, Crit Care Med 2001)	7/56 (6%)	NA	Viral cultures, PCR
Unexplained ARDS (Papazian, Crit Care Med 2007)	30/100 (30%)	Pneumonia, fibrosis	Histology on open-lung biopsy. CMV (virology) in 10/30
Patients under MV (Chiche, Crit Care Med 2009)	11/242 (5%)	Pneumonia	Rapid shell-vial culture, cell culture

CMV in the ICU

- Prospective longitudinal double-blinded observational study
- 97 adult non immunosuppressed CMV-seropositive patients with new onset of severe sepsis included
- Leukocytes, plasma and tracheal secretions were examined weekly for CMV-DNA by PCR


Heininger, Critical Care 2011

Treatment


- Wether CMV is a truly pathogen or a by-stander remains to be elucidated
- No current recommendation for treatment
- Ganciclovir to be fully evaluated including risk/benefit ratio
- Several clinical trial (at least 2) with Ganciclovir pre-emptive approach ongoing
- Few promising drugs (Maribavir, Artesunate, Cyclopropavir...) in development regarding emergence of resistances

- RVS is the most commonly identified pathogen (60-80%) of LRTI in infants worldwide
 - VRS is the leading cause of infectious disease hospitalizations among infants and death among postneonatal infants, besides malaria.
 - VRS also causes more severe and prolonged bronchiolitis compared to that caused by other etiologies.
- 80% hospitalized RSV-infected infants
 <2 months being previously healthy

VRS in the pediatric ICU

- VRS-LRTI is the most frequent cause of non-elective PICU admission for mechanical ventilatory support in infants during the winter season.
- 734 children<2 years admitted to the hospital with VRS bronchiolitis
 - 22% admitted to the ICU (high flow cannula, NIV)
 - 10% intubated and MV
 - Very young age, prematurity, underlying cardiopulmonary disease and immunodeficiency, more likely to be admitted to PICU with severe disease

» Sala et al. J Asthma 2014 pp. 1-5

 High incidence of pulmonary bacterial co-infection in children with severe RSV bronchiolitis, increasing severity of respiratory illness

» Thorburn K et al. Thorax 2006; 61:611-615.

RVS Treatment

- Absence of medical treatments. Mainly supportive.
- **Prevention:** the most effective approach against severe RSV... but no vaccine!
 - Avoiding contact.
 - Palizumab: Humanized murine monoclonal antibody directed against the surface RSV fusion protein.

	Palivizu	mab	Placet	00		Odds Ratio			Odds	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	I	M	H, Fixe	d, 95%	CI	
Cardiac 2003	34	639	63	648	39.5%	0.52 [0.34, 0.80]						
IMpact-RSV 1998	48	1002	53	500	44.9%	0.42 [0.28, 0.64]						
MAKI 2013	2	214	11	215	7.2%	0.17 [0.04, 0.80]			-			
Subramanian 1998	0	22	2	20	1.7%	0.16 [0.01, 3.64]	•		-			
Tavsu 2014	0	39	10	41	6.7%	0.04 [0.00, 0.67]	+		-			
Total (95% CI)		1916		1424	100.0%	0.41 [0.31, 0.55]			•			
Total events	84		139						62			
Heterogeneity: Chi2=5.	.34, df=4 (F	P = 0.25); 1 ² =25%	6				-			+	
Test for overall effect 2	Z=6.08 (P -	< 0.0000	01)			F	0.01 avors	0.1 palivia	zumab	Favor	10 s plac	100 ebo
ig. 3 <u>Meta-analysis o</u>	f RSV-rela	ted ho	spitalizat	ion in	the rand	omized placebo-con	trolle	d trial	с <i>М_</i> ₽	/ Man	tel_H	laeneze

Wegzyn C et al. Infect Dis Ther 2014; 3:133-158..

Palizumab

• Cost-effective in the prevention of acute infection in highrisk patients (passive immunoprohylaxis)

> Prematurity, chronic lung disease in infants born preterm and/or hemodinamically significant congenital heart disease

> > ➢ Resch B et al. Pediatr Infect Dis J 2012; 31:e1-e8.

- IM 15 mg/kg, monthly (5 doses during RVS season)
- Off-label use of prophylactic palizumab in infants and young children with underlying severe respiratory disease

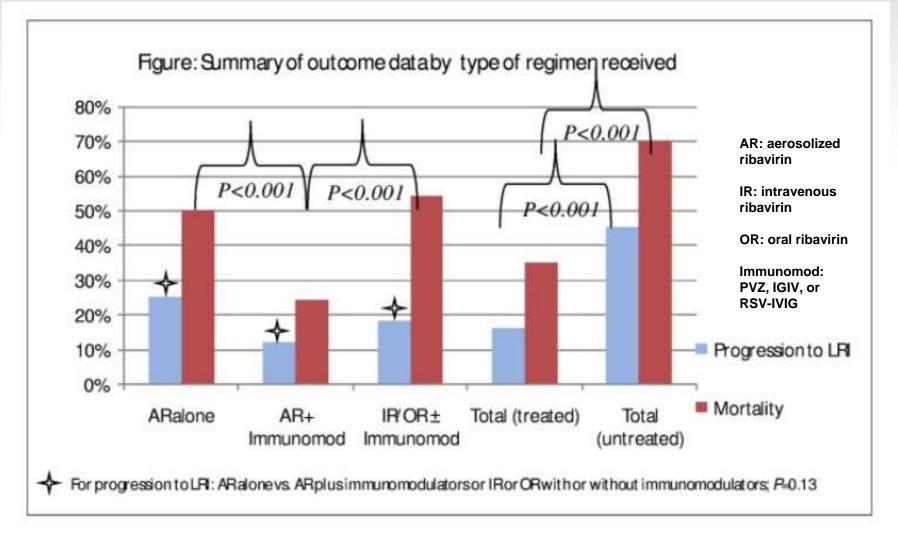
Gaboli M et al. Pediatr Pulmonology 2014; 49:490-502

RVS in immunocompromissed patients

Children with higher RSV genomic load have more severe bronchiolitis

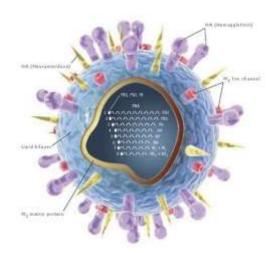
» Hasegawa et al. J Pediatr Dis 2014 pp

- Lymphocytopenia is a predictor of progression to LRTI, not only in the pediatric population but also in adult HSCT recipients and patients with leukemia
 » Torres HA et al. Haematologica 2007; 92:1216-23
- Although neutropenia has not been conclusively established to be an independent risk factor for the development of LRTI, *it may be considered to play a role in the development of bacterial co-infections/superinfectons*.


Off-label RVS treatment

- Ribavirin: low efficacy, carcinogenic & teratogenic potential
 - Aerosolized: risk for health care workers, high costs (appropriate equipment)
 - **Systemic** ribavirin: *effective in HSCT patients, "low" side effects*
 - » Gueller S et al. Transpl Infect Dis 2013; 15(4):435-40
 - » Casey J et al. Bone Marrow Transplant 2013; 48(12):1558-61
- RBV + IV Polyclonal immunoglobulines (standard and RSVspecific)
- IV Palizumab, coadjuvant, preemptive?
 - » Santos RP et al. Pediatrics 2012; 130 (6):1695-9.

• IV palizumab and ribavirin combination


- » Chávez-Bueno S et al. Pediatr Infect Dis J 2007; 26(12):1089-93
- » Chemaly RF et al. J Pediatr Hematol Oncol 2014; 36 (6):e376-81

RVS management in adult recipients of HSCT

Systematic Review. Shah JN and Chemaly RF. Blood 2011, 117 (10):2755-2763.

INFLUENZA

Desafios: de H5N1 a H1N1

Flexiblidad

"Prepare for the worst, hope for the best" (WHO)

Burden of Influenza

- Global burden of seasonal influenza: ~1 billion cases, with 3-5 million severe cases and up 300,000 to 500,000 deaths annually
- A/H1N1pdm09: 61 million US cases by April 2010 (20% population), with about 275,000 hospitalizations, and 12,500 deaths (CDC)
- Since 2010: seasonal H3N2 and influenza B co-circulating with A/H1N1pdm09
- Risk factors different between seasonal and H1N1 pdm09
 - H1N1pdm09 hospitalizations: <10% in elderly (>90% for seasonal flu)
 - H1N1pdm09 mean age for deaths ~ 38 yrs (76 yrs for seasonal flu)
 - 5 times more deaths in those <50 years than for seasonal flu
- H5N1 avian influenza continues to be a serious public health threat.
 Over 600 cases worldwide with case fatality rate ~60%

Influenza Antivirals

- Adamantanes (M2 ion channel inhibitors)
 - Prevent virus from entering cell
 - Effective against influenza A only, but not active against current A/H3N2 or A/H1N1pdm2009 viruses
 - Amantadine, Rimantidine
- Neuraminidase inhibitors
 - Bind to the neuraminidase enzyme active site and blocks removal of sialic acid, preventing release and spread in respiratory tract
 - Improved safety and resistance profiles compared to adamantanes
 - Effective against influenza A and B
 - Zanamivir: Inhaled (Relenza)
 - Oseltamivir: Oral (Tamiflu)
 - Peramivir: IV (Rapiacta, approved in Japan and South Korea)
 - Laninamivir: Inhaled (Inavir, approved in Japan)

Antiviral susceptibility (2012)

	Oseltamivir	Zanamivir	M2 Inhibitors
Pandemic A (H1N1) 2009	Susceptible*	Susceptible	Resistant
Seasonal A (H3N2)	Susceptible	Susceptible	Resistant
Influenza B	Susceptible	Susceptible	Resistant
Avian Influenza A (H5N1)	Susceptible	Susceptible	Variably resistant

*Sporadic isolates resistant to oseltamivir have been reported

Clinical resistance to Oseltamivir

- Rapid development of widespread oseltamivir resistance in seasonal A H1N1 strain during 2008-09
 - Virtually 100% seasonal H1N1 viruses were oseltamivir resistant
 - Virus contained the H275Y mutation. Considered to be a spontaneous mutation and not in response to drug pressure
 - H275Y mutation also confers resistance to peramivir but fully susceptible to zanamivir
 - H1N1 seasonal variant much less in circulation after emergence of H1N1pdm2009
- Currently circulating H1N1, H3N2 and B strains are sensitive to neuraminidase inhibitors
 - Background level of oseltamivir resistance in H1N1pdm2009 virus remains low globally (approximately 1%); mainly due to H275Y mutation

Clinical resistance to Zanamivir

- Rare reports of zanamivir resistance
 - No cases of zanamivir resistance reported in over 5,000 patients with influenza treated in clinical studies
 - In 1998, 1 case of drug-selected resistance reported in immunocompromised child with influenza B

3 reports of critically ill patients with pH1N1

- \circ All immunocompromised patients
- \circ 2 patients had been treated with IV zanamivir, 1 with IH zanamivir
- 2 patients I223R mutation detected during oseltamivir and before zanamivir treatment
- $\circ~$ No evidence of clinical clone with both mutations

Early Oseltamivir treatment in pandemic H1N1

- Early (< 48 hrs) treatment associated with
 - $-\downarrow$ duration of viral detection, fever, **symptoms**
 - − ↓ risk of pneumonia (OR 0.12, 95% CI 0.08- 0.18)
 - ↓ risks of death in severely ill (OR 24.2, 95% CI 12 49) or ICU admit/death in hospitalized
 - ↓ risks of ICU admission (6% vs 31.5%) and mortality (0.5% vs 14.5%) in pregnant women
 - ↓ risks of hospitalization, ICU admit (8% vs 22%), and death (1% vs 6%) in SOT recipients

Cao, NEJM 2009 - Li, Chest 2010 - Kumar , Lancet ID 2010 - Siston, JAMA 2010 - Jain , NEJM 2009

Delayed Oseltamivir treatment in pandemic H1N1

Location	No. treated	Outcomes
USA (Siston, JAMA 2010)	115 pregnant women	↓ ICU (18 vs 46%) and death (5 vs 25%) risks if treated on day 3-4 vs >4
Mexico (Dominguez-Cherit, JAMA 2009)	44 ICU	↑ survival (OR 7.4; 95% CI, 1.8- 31.0)
Argentina (Farias, ICM 2010)	147 pediatric ICU	↓ mortality if ≤ 1 day after hospital admit (OR 0.20; 95% Cl, 0.07-0.54)

Other findings in Oseltamivir and Zanamivir

- Oral **oseltamivir**
 - Adequate NG absorption in most critically ill patients
 - No dose alteration for obesity (< 200 kg)
 - Altered dosing regimens for premature infants, neonates, renal replacement therapies
- Nebulized zanamivir
 - Reports of **bronchospasm** in serious pH1N1 illness
 - Risk for **obstruction** of ventilator filters (lactose carrier in commercial formulation)

Kiatboonsri, CID 2010 - Kidd, Lancet 2009 - Acosta, JID 2010

Antivirals Combinations

OPEN ORCESS Freely available online

Triple Combination of Amantadine, Ribavirin, and Oseltamivir Is Highly Active and Synergistic against Drug Resistant Influenza Virus Strains *In Vitro*

Jack T. Nguyen¹*, Justin D. Hoopes², Minh H. Le¹, Donald F. Smee², Amy K. Patick¹, Dennis J. Faix³, Patrick J. Blair³, Menno D. de Jong⁴, Mark N. Prichard⁵, Gregory T. Went¹*

- Triple regimen highly synergistic against amantadineand oseltamivir-resistant influenza A viruses
 - Synergy of the triple combination was significantly greater than that of any double combination tested
- Dual NAI combos showed additivity to antagonism

Nguyen, PLOSone 2010

Oseltamivir and inhaled Zanamivir in seasonal Influenza

	O + Z n=157	O n=141	Z n=149	P value O+Z/O	P value O+Z /Z
Mean (SD) viral load ∆ day 0 to 2 (log10 cgeq/µL)	2.14 (1.54)	2.49 (1.52)	1.68 (1.68)	0.060	0.01
Day 2 influenza RT-PCR < 200 cgeq/µL (%)	46%	59%	34%	0.02	0.02
Duration of symptoms in days (median, IQR)	4 [2.5-14]	3 [2-7]	4 [2.5-14]	0.01	0.96

Duval, PLoS Med 2010

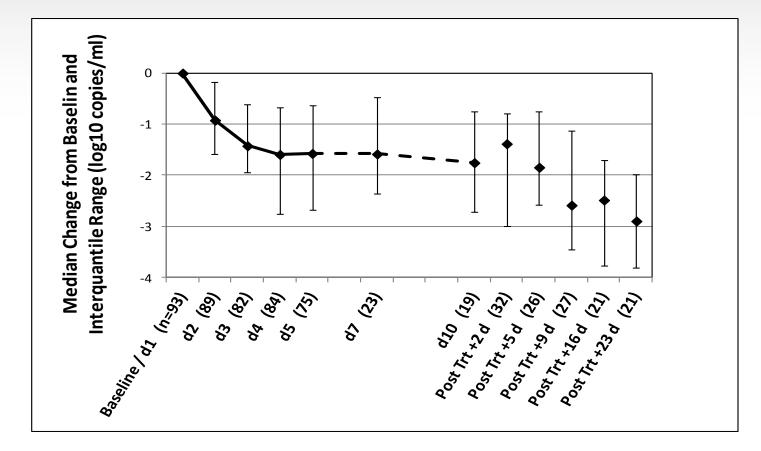
Rationale for intravenous antiviral development

- Emergence of widespread oseltamivir resistance in 2008/09 seasonal H1N1 strain and of H1N1pdm2009 highlighted need for parenteral agent with unique resistance profile
- No antiviral agents with proven efficacy for severe influenza
- No IV antiviral agents with full marketing approval for severe influenza (except peramivir in Japan and South Korea)
- Unmet need for IV formulation in patients who:
 - Are non-responsive to approved treatments
 - Unable to take oral medication or inhaled medication (e.g. ET tube, impaired GI function, diarrhea, ventilator use, inadequate inhalation, etc)
 - Resistance to oseltamivir (or peramivir, adamantanes)
 - Are severely ill and require reliable delivery through IV route

Others NAI clinical trials

- Uncomplicated influenza
 - Peramivir: single IV dose (300 or 600 mg) superior to placebo and comparable to 5 days of oseltamivir in adults (NB: not superior for resistant H1N1)
 - Laninamivir: single inhaled doses of 20 mg or 40 mg comparable to 5 days of oseltamivir in adults and children (NB: superior for resistant H1N1 in children)
- Hospitalized adults
 - Peramivir: multiple IV doses (200 or 400 mg) comparable to oseltamivir in hospitalized adults

Kohno, AAC 2010 - Sugaya, AAC 2010


Intravenous Zanamivir in hospitalized adults with influenza

- Multicenter open-label, single-arm Phase II study : IVZ 600 mg twice daily for 5 days (extend up to 10 days)
- 130 adult subjects enrolled (November 2009 to September 2011)
- 87 subjects received IVZ for 5 days or less; 43 subjects received IVZ for 6-10 days (80% of subjects received oseltamivir prior to study entry)
- **14- and 28-day mortality**: 13% and 17% (respiratory failure, sepsis, pneumonia, multi-organ failure [No deaths related to zanamivir])

Zanamivir ≤5 days (N=87)	Zanamivir >5 days (N=43)	Total N=130
87	43	130
9 [1, 83]	24 [6, 133]	15 [1, 133]
68	40	108
8 [1, 67]	18.5 [3, 104]	11.5 [1, 104]
	(N=87) 87 9 [1, 83] 68	(N=87) (N=43) 87 43 9 [1, 83] 24 [6, 133] 68 40

Marty, JID 2014

Intravenous Zanamivir in hospitalized adults with influenza

qPCR viral load determination in subjects positive at baseline

Marty, JID 2014

Intravenous Zanamivir in hospitalized adults with influenza

	Zanamivir ≤5 days (N=87)	Zanamivir >5 days (N=43)	Total N=130
Ventilation status at baseline ^a			
ECMOª, n (%)	2 (2)	1 (2)	3 (2)
Endotracheal mechanical ventilation, n (%)	34 (39)	26 (60)	60 (46)
Ventilation status at any time during study			
ECMO, n (%)	2 (2)	2 (5)	4 (3)
Endotracheal mechanical ventilation, n (%)	39 (45)	35 (81)	74 (57)

Marty, JID 2014

Therapeutic antibodies

- Recent advances enabling the cloning of human Ig G genes have proven effective for discovering monoclonal antibodies with therapeutic potential
- Few candidates from numerous antibody-secreting plasma cells or plasmablasts
- Some antibodies elicit robust in vivo synergism when combined with oseltamivir
- Influenza-infected patients could benefit from antibodies treatment
- Human RCTs coming

Conclusions

- Medical needs for more effective therapy of severe influenza
 - Antiviral combinations in immunocompromised or seriously ill patients ?
 - Role of immunomodulatory interventions
- Antiviral drug choices and clinical use increasingly complicated by antiviral resistance issues
- Progress in development of intravenous NAIs and novel antivirals, including therapeutic antibodies
- If clinical course remains severe or progressive, despite ≥5 days of treatment, should be continued until virus infection is resolved or clinical improvement
- If oseltamivir unavailable or resistance suspected, treat with zanamivir

... OTHER VIRUSES

- Rhinovirus / Enterovirus : Pleconaril
- Human Adenovirus: Cidofovir
- Metapneumovirus: Rivabirin
- Varicella Zoster: Aciclovir
- Measles
- Hantavirus
- MERS-CoV

Vall d'Hebron Hospital

centro de Investigación Biomédica en Red Enfermedades Respiratorias