Measuring public health impact of adverse drug reactions

IMI PROTECT London Symposium 2015 February 19

Luisa I báñez, on behalf of WP2

Fundació Institut Català
de Farmacologia

Outline

Background and Objectives

Methods: Calculation of Population Attributable Fraction.
Prevalence of drug exposure Measures of effect

Results: benzodiazepines-hip fracture macrolides-induced liver injury

Conclusions
Considerations and final points

Background

- Adverse drug reactions (ADR):
- morbidity and mortality
- Prevention ADR:
- effective intervention strategies
- Drug utilisation studies:
- long-term benefit/risk
- prevalence of drug use
- Population attributable fraction (PAF)
- Planning public health interventions

Protect

Population attributable fraction

- Proportional reduction in average disease risk

ÿ over a specified time interval
ÿ that would be achieved by eliminating the exposure of interest
ÿ while distributions of other risk factors remain unchanged

Objectives

To assess the public health impact of PROTECT drug-adverse event pairs

POPULATION ATTRI BUTABLE FRACTION

PROTECT

Methods: databases

Databses	HCU	MRs	MI DAS
Description	Drug exposure as part of filling claims for payment. Wholesalers' sales.	Drug exposure as routine collection of clinical data.	Surveys. Commercial data provider: IMS Health.
Drug converge	Prescribed. Reimbursed. Dispensed.	Prescribed by healthcare professional. Prescribed and dispensed.	Sales of medicines from wholesalers and manufacturers.
Type data	Individual-level patient Aggregated data	Individual-level patient.	Aggregated data.
Population coverage	Usually 100\%	<10\%, representative of the country.	Sample projected at a country level.
PROTECT	ePACT (UK) GIPdatabank (NL) Spanish MoH database (ES)	CPRD, THIN (UK). Mondriaan-NPCRD/AHC (NL). BIFAP (ES).	10 European countries and USA.

Protect
 РRotect

Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium

DRUG CONSUMPTION DATABASES IN EUROPE Countries summary

First version August 2011
Updated version February 2015

Master document
First version August 2011
Updated version February 2015

- imp efpiáa

SPAIN

Population

Health care provider

Population coverage

Model of health care financing

46,464,053 inhabitants (1/7/2014). http://www.ine.es/welcoing.htm Public health sector. Decentralized system with devolved powers to the 17 regions across Spain.
Universal access to health services.
99.5%. It includes low-income inhabitants. Civil servants can opt out of the public financed system. 88% of this population and their beneficiaries are covered for-non-for-profit private sector.
13% of the Spanish population are covered by private-for-profit voluntary health insurance, with an important regional variation. Since April 2012, the coverage has been limited requiring residents who earn $>100,000 €$ /year and do not make Social Security contributions to pay for treatment. Undocumented migrants have also been excluded.
Highly decentralised model with the allocation of block grants -obtained through taxation-, from the central government to the autonomous communities, except for Navarre and the Basque Country with high autonomy taxation. Taxation represents 94.1% of the funding of the social security system. Out-of-pocket payments.

Reimbursement characteristics

Method of payment The National Health System (SNS) partially pays reimbursed medicines. Patients pay the rest.

The beneficiaries

Categories of

reimbursable drugs

Structure of reimbursement to the patient (patient copayment)

Reimbursement

 level for drugsAll Spanish residents.
Based on negative lists that exclude pharmaceuticals with low treatment value or not proved to have adequate increased cost-effectiveness. Reimbursement of medicines depends upon the age and income of the patient. Special reimbursement category for people with specific treatments.
Retired people pay 10% of the medicines price with a monthly maximum depending on annual income :> €100,000, copayment is 60%; < €18,000 (max per month $€ 8$), between >€18,000-<€100,000 (max per month €18), >€100,000 (max per month $€ 60$). Employees and beneficiaries copayment rate based on their annual income: <€18,000 40\% of the medicines price; >€18,000-<€100,000 $50 \% ;>€ 100,000(60 \%)$. Exemptions for people with toxic syndrome and other disabilities, on social cash aid, retired with non-contributory pensions, unemployed not receiving any social aid, work derived diseases or injuries. For specific treatments copayment is 10% up to a maximum of $€ 4.13 /$ package dispensed. Some food products no copayment after a medical application and approval. There are regional variations. reimbursed. The reimbursement rates depend on annual income. For specific treatments, reimbursement is 90%.

PRotect

National drug consumption database: DGFPS database

Organisation	Ministry of Health, Social Policy, and Equity. DGFPS: Dirección General de Farmacia y Productos Sanitarios (General Directorate of Pharmacy and Health Products).
Web	www.msc.es/profesionales/farmacia/organizacion.htm
Source	Drugs dispensed by community pharmacies reimbursed by the National Health System. Data is collected at regional level and centralised in the Ministry of Health. Not included are medicines consumption reimbursed by other health insurances that specifically cover, civil servants or military personnel.
Setting	Outpatient.
Population coverage	95\%.
Accessibility	Application to data provider sede@msssi.es (If of interest, data may be applied for at regional level with a list of the regional health authorities available on the website).
Drug codification	ATC code.
Data	Region, DDD, turnover, prescriber's code, national pharmaceutical code, pharmacist's code, strength, dosage form. Some regions collect data on age and gender.
Record period	Since 1985 (computerised data).
Language	Spanish.
Record linkage	No.
List of national websites of interest	
National Medicine Agency	Agencia Española de Medicamentos y Productos Sanitarios-AEMPS. www.aemps.gob.es Spanish Agency for Medicines and Medical Devices.
Pricing Agency	Ministerio de Sanidad, Política Social e Igualdad. Dirección General de Farmacia y Productos Sanitarios. www.msc.es/profesionales/farmacia/organizacio Ministry of Health and Social Policy. Directorate of Pharmacy and
Reimbursement Agency	\qquad de Farmacia y proauctos Sanitarios.
Pharmaceutical data source	Consejo General de Colegios Oficiales de Farmacéuticos. General Council of the Official Pharmaceutical Professional Association. https://botplusweb.portalfarma.com/ (No free Database with information about drugs by region. access).
	Agencia Española de medicamentos y productos sanitarios $\frac{\text { http://www.aemps.gob.es/cima/fichasTecnicas. }}{\text { do?metodo=detalleForm }}$ (AEMPS). CIMA database.

Methods: validity drug consumption data

Methods: Discrepancies between HCU and MRs databases

Hatabases	ePACT (UK) GIPdatabank (NL) Spanish MoH database (ES)	MRs databases CPRD, THIN (UK). Mondriaan-NPCRD/AHC (NL). BIFAP (ES).
Drug coverage	Reimbursed	Prescribed Prescribed and dispensed (Mondriaan NPCRD)
Outcome	DDD/1,000 inhabitants /day \ddagger apparent users (AU) AU=DID x 365/d (recommended treatment period)	One-year period prevalence rates (PPRs): users/1,000 people-year
Year of study	2008	2008
Statistical	Percentage differences, correlation coefficient, Bland Altman plots (level of analyses	agreement). Stratification: ATC level 3 (Calcium channel blockers, antiepileptic drugsł chronic use).
ATC level 4 (Macrolides, benzodiazepines, antidepressants intermittent use). short/		

amperpia

Methods:

Discrepancies between HCU and MR databases

ATC level
Figure 1. Boxplot of percentage differences between healthcare utilisation and medical records databases by group of medicines, 2008. ATC level 3: calcium channel blockers (C08C, C08D), and antiepileptic drugs (N03A). ATC level 4: macrolides (J01FA), hypnotics and sedatives (N05CD, N05CF), anxyolytics (N05BA), tricyclic antidepressants (N06AA), and selective serotonin reuptake inhibitors (N06AB).

Correlation coefficient:
ATC level 3: $r=0.88, p<0.001$
ATC level 4: $r=0.51, p=0.008$

Bland Altman plot	ATC level 3	ATC level 4

-60
The percentage differences and the level of agreementeinusersio (MRs) is lower and higher compared to apparent users (DIDs, ${ }_{\text {H }}$ HCU) , respectively, the more aggregated the data.

- imp efpía

Methods: PAF calculation

SOURCES OF PREVALENCE OF DRUG EXPOSURE

Benzodiazepines-hip fracture:

- IMS MIDAS database: DIDs converted into users through conversion factor (average users/average sales volume in Denmark, Norway and Netherlands).
Macrolides and induced hepatotoxicity:
- Medical record databases: users/1,000: CPRD and THIN (United Kingdom), Mondriaan databases (Netherlands), BIFAP (Spain), Bavarian Statutory Health Insurance (Germany).

SOURCES OF EFFECT MEASURES

Meta-analysis of results systematic review

Methods: PAF calculation

Benzodiazepines-hip fracture
$\mathrm{PAF}=\mathrm{P}_{\mathrm{e}}(\mathrm{RR}-1) / \mathrm{P}_{\mathrm{e}}(\mathrm{RR}-1)+1^{\text {to }}$
P_{e} prevalence of exposure to the drug; RR relative risk

Macrolides-hepatotoxicity
$\mathrm{PAF}=\mathrm{P}_{\mathrm{O}}\left(\mathrm{RR}_{\mathrm{a}}-1\right) /\left\{\mathrm{P}_{\mathrm{o}}\left(\mathrm{RR}_{\mathrm{a}}-1\right)+1\right\}=\left(\mathrm{RR}_{\mathrm{a}}-1\right) /\left(\mathrm{RR}_{\mathrm{a}}+1 / \mathrm{O}_{\mathrm{o}}\right)^{\S}$
O_{o}, estimated prevalence odds: $\mathrm{P}_{\mathrm{e}} /\left(1-\mathrm{P}_{\mathrm{e}}\right)$ and RR_{a}, the adjusted relative risk
\mathscr{H} Levin ML. The occurrence of lung cancer in man. Acta Unio Int Contra Cancrum. 1953;9:531-41.
§ Greenland S. Interval estimation by simulation as an alternative to and extension of confidence intervals. Int
J Epidemiol 2004; 33:1389-94.

园 imp efpia

Results: benzodiazepines-hip fracture

Results: benzodiazepines-hip fracture

Category	Country	DIDs	PAF (95% C $)$
Short-acting BZD	France	64.1	3.7\% (1.5-6.1)
$\begin{gathered} \mathrm{RR}=1.23(1.09- \\ 1.39) \\ \mathrm{I}^{2}=46 \% \\ \mathrm{P}=0.0006 \end{gathered}$	Germany	14.0	0.8\% (0.3-1.4)
	Italy	42.4	2.5\% (1.0-4.1)
	Spain	67.9	3.9\% (1.6-6.4)
	UK	11.6	0.7\% (0.3-1.2)
	USA	75.9	4.3\% (1.7-7.1)
Long-acting BZD	France	11.9	1.0\% (0.3-1.8)
$\begin{gathered} \mathrm{RR}=1.32(1.10- \\ 1.58) \\ I^{2}=42 \% \\ \mathrm{P}=0.003 \end{gathered}$	Germany	3.9	0.3\% (0.1-0.6)
	Italy	10.0	0.8\% (0.3-1.5)
	Spain	17.6	1.5\% (0.5-2.6)
	UK	7.6	0.6\% (0.2-1.2)
	USA	7.0	0.6\% (0.2-1.1)

(im) efp

Results: macrolides-hepatotoxicity

Macrolides	Country	$\begin{aligned} & \text { Estimated Pe } \\ & (x 1,000) \end{aligned}$	PAF (95\% CI)
$\begin{gathered} R R=3.80 \\ (2.20-6.55) \\ 1^{2}=64 \% \\ P<0.0001 \end{gathered}$	Germany Bavarian claims database	62.6	18.4\%(10.3-25.7)
	Spain BIFAP database	62.1	18.3\% (10.2-25.6)
	UK CPRD database	48.2	14.8\% (8.1-21.0)
	UK THIN database	56.3	16.8\% (9.3-23.7)
	Netherlands NPCRD database	21.7	7.2\% (3.7-10.6)
	Netherlands AHC database	116.2	29.5\% (18.0-39.4)

Considerations (1)

Scenarios for public health action:

1. Common outcome: benzodiazepines-hip fracture
Low rate ratio and high prevalence of exposure
A small PAF may mean many cases could potentially be prevented.
2. Rare outcome: ALI
macrolides-induced liver injury
High rate ratio and high prevalence of exposure
A high PAF: a few cases of hepatotoxicity could potentialy be prevented.

Considerations (2)

Causal relationship

Bias in the estimation of PAF:
Prevalence of drug exposure
RR calculation
Formula to calculate PAF and 95\% CI

CAUSAL RELATIONSHIP:

1. Proportion of the ADR burden causally explained by the drug: No availability of individual-patient level data precluded the consideration of confounders and effect modifiers in PAF calculation.

Considerations (3)

Causal relationship

Bias in the estimation of PAF:
Prevalence of drug exposure RR calculation
Formula to calculate PAF and $95 \% \mathrm{Cl}$

CAUSAL RELATIONSHIP:
2. Proportion of the ADR that would be eliminated or reduced from the population if the exposure to the drug was eliminated or reduced.

Importance of the intervention to eliminate the exposure.

Considerations (4)

Causal relationship
Bias in the estimation of PAF:
Prevalence of drug exposure
RR calculation
Formula to calculate PAF and $95 \% \mathrm{Cl}$
BIAS IN PREVALENCE OF DRUG EXPOSURE:
DI Ds converted into users: calculated with the average users/average sales volume from Denmark, Norway and Netherlands.
MRs databases: representative of the target population.
Broad definition of exposure: ever exposed vs never exposed.

Considerations (5)

Causal relationship
Bias in the estimation of PAF:
prevalence of drug exposure RR calculation
Formula to calculate PAF and $95 \% \mathrm{Cl}$

BIAS IN THE RR CALCULATION: HETEROGENEITY META-ANALYSES
Inclusion of observational studies: moderate to considerable heterogeneity ($\left(^{2}\right.$) \ddagger limits generasibility of results.
No system for grading of the evidence.

Considerations (6)

Causal relationship
Bias in the estimation of PAF:
prevalence of drug exposure
RR calculation
Formula to calculate PAF and 95\% CI
FORMULA TO CALCULATE PAF AND $95 \% \mathrm{Cl}$
Extensive bibliography on formulas to calculate the PAF and $95 \% \mathrm{CI}$.

Two different approaches: Levin's formula and substitution method Greenland's approach to consider the 2 independent sources of information.

- imp efpia

Final points

PAF as a starting discussion point of the public health consequences of intervening to reduce the prevalence of a particular exposure

Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium

Thank you

Members of PROTECT WP2

J. Slattery, Y. Alvarez, G. Candore, J. Durand, X. Kurz (European Medicines Agency); J. Hasford, M. Rottenkolber (Ludwig-Maximilians-Universität-München); S. Schmiedl (Witten University); F. de Abajo I glesias (Universidad de Alcala); M. Gil, C. Huerta Alvarez, G. Requena, E. Martin (Agencia Espanola de Medicamentos y Productos Sanitarios); L.A. Garcia, A. Ruigomez (Fundación Centro Español de Investigación Farmacoepidemiológica); V. Abbing-Karahagopian, A. Afonso , M.L. de Bruin, R. Udo, F. de Vries, A.C.G. Egberts, B. Leufkens, P. Souverein, L. van Dijk, M. De Groot, H. Gardarsdottir, R. Van den Ham, O. Klungel, S. Belitser, A. De Boer, R. Groenwold, A. Hoes, W. Pestman, K. Roes, S. Ali, J. Uddin, I. Teixidor (Universiteit Utrecht); J. Campbell, A. Gallagher (CPRD); E. Ng, T. Van Staa, L. Smeeth, I. Douglas (London School of Hygiene and Tropical Medicine); U. Hesse, P. Ronn (Lægemiddelstyrelsen (Danish Medicines Agency); J. Weil (formerly GSK), O. Demol (Genzyme); J. Logie, D. Webb, J. Pimenta, K. Davis (GlaxoSmithKline Research and Development LTD); L. Bensouda-Grimaldi, L. Abenheim (L.A. Sante Epidemiologie Evaluation Recherche); A. Bate, N. Gatto, R. Reynolds (Pfizer); J. Amelio, R. Brauer, G. Downey, M. Feudjo-Tepie, M. Schoonen (Amgen NV); O. Demol (Genzyme); S. Johansson (AstraZeneca); P. Primatesta, R. Schlienger, E. Rivero, J. Fortuny (Novartis); J. Robinson, M. Schuerch, I. Tatt (Roche); H. Petri (formerly Roche); M. Miret (Merck KGaA); E. Ballarin, L. Ibañez, J.R. Laporte, M. Sabaté, P. Ferrer (Fundació Institut Català de Farmacologia).

